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COMFORMALITY AND ISOMETRY OF RIEMANNIAN
MANIFOLDS TO SPHERES. II

KRISHNA AMUR & S. S. PUJAR

1. Imtroduction

Let M be an n-dimensional (n >> 2) connected smooth Riemannian manifold
with positive definite metric g. If a vector field ¥ on M defines an infinitesimal
conformal transformation on (M, g), then v satisfies & ,g = 2pg where &, de-
notes the Lie derivative with respect to v, and p is a function on M. v defines
an infinitesimal homothetic transformation or infinitesimal isometry according
as p is constant or zero.

In the last decade or so several authors (for exhaustive lists see [7], [9]) have
studied conditions for a Riemannian manifold of dimension # > 2 with con-
stant scalar curvature k£ to be either conformal or isometric to a sphere. Re-
cently Ackerman and Hsiung [1], Yano and Hiramatu [7], [8] and Amur and
Pujar [2] have studied the conditions without putting restrictions on the scalar
curvature k such as £,k = 0, &,, &%,k = 0 or [v, Dplk = 0, etc. where Dp is
the vector field on M associated with the differential 1-form dp.

In this paper we consider a metric semi-symmetric connection ¥ on M in-
duced by a smooth function p on M, and obtain conditions for M to be con-
formal or isometric to a sphere. It is shown in § 5 that our results include some
results of Yano and Obata [9] and some of Hsiung and Mugridge [3] as special
cases.

2. Notation and formulas

Let 7 denote a Riemannian connection on M. If x*,i = 1,2, - - -, i, are local
coordinates in a neighborhood of a point x of M, then the Christoffel symbols
associated with V' are denoted by {jl k}’ and the components of g by g;;. The
raising and lowering of the indices are as usual carried out respectively with
g% and g;;. Let p be a smooth function of M. Then = = dp is a smooth closed
differential 1-form on M. The local components of = will be denoted by p;. A
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connection V' on M, whose Christoffel symbols are denoted by I, is defined
by

h
@.1) s, = {,- :

} + oo — glcjph s
where p* = g*'p,. Since I, g, ; = 0 holds and %, is not symmetric, the connec-
tion J is called a metric semi-symmetric connection on M, [6].

The components Ifk 5" of the curvature tensor K of  and K, ;" of the cur-
vature tensor K of I are related by

(2.2) Kyt = K" — ot + idt — Al + good
where
(2.3) @ = Vi0: — ;0. + 3815000

are components of a tensor field of type (0,2) on M and 4* = g"%a,,. (2.2)
shows that we can regard K as a tensor field on the Riemannian space (M, g).
Setting K, ;,, = g1,.K, ;" we have

(2~4) Kjkih = _Kkjih s ‘Kekjhi = _Kkjih. .

Since 7 is a closed 1-form on M, it follows that «,; is symmetric in i and j,
consequently K satisfies Bianchi first identity. Hence we obtain [4]

(2'5) me = ‘Knkjih -

Contracting (2.2) with respect to the indices /2 and & we have

o

(2.6) Kji = Kji —(n— 2)aj~; — &gy,
where

i i, B—2 4
2.7 a = gia,, =V,p" + 3 00" .

Transvection of (2.6) with g/ yields
(2.8) k=k—20n— Da,

where k = g”]%ij.
We define a positive smooth function u on M by setting

2.9 u(x) = e~*@
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for all x e M. Denoting the covariant differentiation of u with respect to I, by
u;, we have

(i) uw, = —up,, (ii) Vjui = u(PjPz‘ - Vjpi) s
(il) du = u(p*p, — dp) ,

where 4 = g*/F )V, is the Laplacian operator.
Now from (2.7), (2.8) and (2.10) (iii) we obtain

(2.10)

.11 Wk — k) = 2(n — Dudu — n(n — Duyt .

Corresponding to the tensor filelds G, Z and W (for definitions see [71, [3])
on (M, g) we define G°, Z and W on the same space by

(2.12) Gy =K, — —8u >
k
m(ghkgij — 8ri8xi) 5

Wk]‘ih = aZDwm + blgkhéji - bzgkiGjh + bsgjiékh
- b4gthki + bsgijih - bﬁgithj 5

(2-13) 2kjih = Kkjih e

(2.14)

where a, b,, - - -, by are the same constants which occur in the definition of
ijih‘ . .
Substituting for K; and & from (2.6) and (2.8) respectively in (2.12) we ob-

tain
(2:15) Gy=Gu+ (n — DTy,
where
1
Tji = (PjPi - Vjpi) + ;(Pkpk - Alo)gji
(2.16)

= u”(Vjui — —1—Augﬁ>
n

in view of (2.10). It is easy to see that
(2.17) giT, =0, giG,=0.

Computations similar to those for G 5 yield

o

(2.18) ijih = ijih + Skjih ’

where
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(2.19) Skﬂh = gunly — gthki + Tkhgji — L3280t »
(2-20) ijih = ijih + ijih >
where

2 = (G v e)eti (Gl + b)eds
(221) + < + b)g—]z kh — <n j‘_ 5 -+ b4)gthki

+ bﬁgijih — beginTy;

n_.

It is easy to see that
2.22) T, T — u-2<7fuf _ —I—Aug”) (Vjui —~ iﬁugu) ,
n n

(2.23) éijGo”' = G,;,GY + 2(n — )G, T + (n — 2’'T,; T,
(2.24) W WHR — W, W™ 4 2e(n — DT,,GY + c(n — 27T, TH,,
where ¢ is a constant given by [3]

42 2 sb 8 li‘lbz 1 GbZ
029 "ozt El i+(i§1(—) ) + =1 3 b,

— 2(bib, + byb, — biby) .

3. Lemmas

Lemma 3.1. Suppose M is orientiable and compact. p = constant if and only
if the scalar function k is equal to the scalar curvarure k of M.

Proof. If p = constant, it is trivial to see that k=k. Suppose k = k holds.
Then from (2.11) we have 2uduy — nu? = 0 which implies

I wug)dV = 0
M

where 4V denotes volume element of M. Since u > 0, the integral equation im-
plies ¥ = constant which in view of (2.9) implies p = constant.
Lemma 3.2. Suppose M is compact and orientiable. Then

n—2 n—2

3.1) I T iu)GdV = — I Wi dV = — I @ kdV
M M M

where Du is the vector field on M associated with the 1-form du.
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Proof. Since V'K, = iV k, from the formula G, = K,; — (k/n)g,, it fol-
lows that

n—2
2n

(3.2) ViG,, = V.

Hence by directly computing F/(4°G,,), using (3.2) and integrating over M we
obtain (3.1).

Lemma 3.3. Suppose M is orientable and compact. Then the following inte-
gral formulas hold for M.

(3.3) % L{ (G .GV — G,Gi9) + (n — 2L pok — n(n — 2YuT, T¥dV =0,

34 %J;, [nu(ijthkjih — W WH™) + c(n — 2P L n.k

— n(n — 2YeuT,TH]dV =0 .
Proof. Since g¥G,; = 0, from (2.17) we can write (2.23) in the form
w(G,,GY — GG — (n — 20T, Tt} = 2(n — 2)G,,Viut .

On integrating over M and using Lemma 3.2, we obtain (3.3). The proof of
(3.4) is similar.

To prove the next lemma we need the following known theorem.

Theorem A (Tashiro [5]). If a compact Riemannian manifold M of dimension
n > 2 admits a nonconstant function p such that

3.5 Fivip = lA,ng'j s
n

then M is conformal to a sphere.

Lemma 3.4. Suppose M of dimension n > 2 is compact, and admits a non-
constant function p. M is conformal to a sphere if the tensor field with components
T, is identically zero on M.

Proof. Since u > 0, from the expression (2.10) for T, it follows that T,
= 0 if and only V,u, = Aug,,/n. Hence from Theorem A the required result
follows.

Finally we list a lemma due to Yano and Obata [9].

Lemma 3.5. Suppose M of dimension n > 2 is complete. If ¥ p.k = 0 and
V.V = Aug,,/n holds for a nonconstant function u, then M is isometric to a
Sphere.
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4, Thoerems

Throughout this and the next sections we shall assume that M is a compact
orientable smooth Riemannian manifold of dimension n > 2.
Theorem 4.1. Let p be a smooth function on M and u = e~*. Then

4.1) L (GG — Go,GY) + (1 — DL pakldV > 0,

[, O e — W) + en — 2LV 2 0,
(>0,

“.2)

where the tensors G and ¥ are formed with the help of the metric semi-sym-
metric connection induced by p. If p is such that the equality in integral equa-
tion (4.1) or (4.2) holds, then M is conformal to a sphere.

Proof. Follows from Lemmas 3.3 and 3.4.

Theorem 4.2. If a smooth nonconstant function p on M is such that

(4.3) Lok =0, G,GY=G,GY,
or such that
(4.4) Lok =0, WyaWHr = W, Wi - (c>0),

then M is isometric to a sphere.

Proof. Follows from Lemmas 3.3 and 3.5 and the conditions stated in the
theorem.

Theorem 4.3. Suppose M is an Einstein manifold. If a smooth nonconstant
Junction p on M is such that

(4.5) G, =0
or such that
(4.6) Wyn=0, (>0,

then M is isometric to a sphere.
Proof. For an Einstein manifold G,; = 0. Hence from Lemmas 3.3 and 3.5
and the conditions stated in the theorem the result follows.

5. Special cases

(1) Let p be a smooth function on M arising from a conformal change of
metric on M, that is, let p be such that a metric g* on M is conformally related
to g by
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(5.1) gh = €gy; .

For any tensor with respect to g, the corresponding tensor with respect to g*
will be denoted by the same letter with a star. The function p induces a metric
semi-symmetric connection ¥ on M and a connection F/ *, called the conformal
change of connection on M. The expressions for the curvature tensors K and
K* in terms of K and the derivatives of p with respect to the Riemannian con-
nection J are the same (see [4]). Since g*?/ = e~**g,,, we have

(5.2) ki =K, K=K, k*=evk,
so that
(5-3) Gﬁ' = Goji ’ Zz)cka'h == ijih > WI::(jz‘h = ijih .

It is easy to see that

(5.4) G*ii = e=t9Gii

(5.5) Wk = € me , Wkkin — o=SeppRiin
so that

(5.6) G*iIGY, = e™G,GY = u*G,, GV ,

5.7 Wk WHEIL — e—4p;,i/kﬁh1,f/kjih - u4p[,i/kjihl,f/kjih ,

where u = e™*,
Substituting (5.6) in (3.3) we obtain

j [(u—sc;g;.c;*if — 4G,GY) + Ln — 27,k
M
(5.8) "
— - 2)2uTijT”]dV —0,

which is an integral formula due to Yano and Obata [9].
Again substituting (5.7) in (3.4) we have

L [(u‘3W;!‘ﬁhW*"ﬁh — uW ey + Lo — 202,k
(5.9) : "

- 2)2cuT“Tff]dV —o0,

which is a formula due to Hsiung and Mugridge [3].
(i) Suppose p is a smooth function on M satisfying

(5.10) Kkjih. = e—P{ajighk — 8 + &5%nr — gkiahj} .
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Then it follows from (2.2) that

(5.11) ‘Ko—kjih =(1 - u—l)Kkjih 5 ‘Ko—ji =(1- u—l)Kji s iC =1 - u Nk,

so that

o

(5.12) G = (1 —uNG,,, Wi = (1 — ™YWy -

For this special case, (4.1) and (4.2) reduce to

(5.13) I

[n(u-l — 2)G,,GY + (n — 2)$Duk]dV >0,
M

.

(5.14) I [n(u‘l'— D Wy WE L+ c(n — 2)2$Duk]dV >0.
M

Thus, if p is a nonconstant smooth function on M satisfying (5.10) and is such
that the equality in (5.13) or (5.14) holds, then M is conformal to a sphere.

On the other hand, if A is Einsteinian and p is a nonconstant function satisfy-
ing (5.10), then, since Goij = (1 — u™)G,,, it follows that Goi]. = 0. Theorem
4.3 shows that M is isometric to a sphere.
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