COMFORMALITY AND ISOMETRY OF RIEMANNIAN MANIFOLDS TO SPHERES. II

KRISHNA AMUR & S. S. PUJAR

1. Introduction

Let M be an n-dimensional ($n \ge 2$) connected smooth Riemannian manifold with positive definite metric g. If a vector field v on M defines an infinitesimal conformal transformation on (M,g), then v satisfies $\mathcal{L}_v g = 2\rho g$ where \mathcal{L}_v denotes the Lie derivative with respect to v, and ρ is a function on M. v defines an infinitesimal homothetic transformation or infinitesimal isometry according as ρ is constant or zero.

In the last decade or so several authors (for exhaustive lists see [7], [9]) have studied conditions for a Riemannian manifold of dimension $n \ge 2$ with constant scalar curvature k to be either conformal or isometric to a sphere. Recently Ackerman and Hsiung [1], Yano and Hiramatu [7], [8] and Amur and Pujar [2] have studied the conditions without putting restrictions on the scalar curvature k such as $\mathcal{L}_v k = 0$, $\mathcal{L}_{D\rho} \mathcal{L}_v k = 0$ or $[v, D\rho]k = 0$, etc. where $D\rho$ is the vector field on M associated with the differential 1-form $d\rho$.

In this paper we consider a metric semi-symmetric connection $\mathring{\mathcal{V}}$ on M induced by a smooth function ρ on M, and obtain conditions for M to be conformal or isometric to a sphere. It is shown in § 5 that our results include some results of Yano and Obata [9] and some of Hsiung and Mugridge [3] as special cases.

2. Notation and formulas

Let Γ denote a Riemannian connection on M. If x^i , $i=1,2,\cdots,n$, are local coordinates in a neighborhood of a point x of M, then the Christoffel symbols associated with Γ are denoted by $\begin{cases} i \\ j \end{cases} k$, and the components of g by g_{ij} . The raising and lowering of the indices are as usual carried out respectively with g^{ij} and g_{ij} . Let ρ be a smooth function of M. Then $\pi = d\rho$ is a smooth closed differential 1-form on M. The local components of π will be denoted by ρ_i . A

Received April 30, 1976, and, in revised form, April 4, 1977. The work of the first author was partially supported by the Department of Atomic Energy Project No. BRNS/Maths/11/74 and that of the second author was supported by C.S.I.R. JRF. No. 7/101 (105)/74-GAU-I.

connection $\mathring{\mathcal{V}}$ on M, whose Christoffel symbols are denoted by Γ_{jk}^h , is defined by

(2.1)
$$\Gamma_{jk}^{h} = \begin{Bmatrix} h \\ j k \end{Bmatrix} + \delta_{j}^{h} \rho_{k} - g_{kj} \rho^{h} ,$$

where $\rho^h = g^{hi}\rho_i$. Since $\mathring{V}_i g_{kj} = 0$ holds and Γ^h_{jk} is not symmetric, the connection \mathring{V} is called a metric semi-symmetric connection on M, [6].

The components \mathring{K}_{kji}^h of the curvature tensor \mathring{K} of \mathring{V} and K_{kji}^h of the curvature tensor K of V are related by

(2.2)
$$\mathring{K}_{kji}{}^{h} = K_{kji}{}^{h} - \alpha_{ji}\delta_{k}^{h} + \alpha_{ki}\delta_{j}^{h} - g_{ji}A_{k}^{h} + g_{ki}A_{j}^{h} ,$$

where

(2.3)
$$\alpha_{ji} = V_j \rho_i - \rho_j \rho_i + \frac{1}{2} g_{ij} \rho_k \rho^k$$

(2.4)
$$\mathring{K}_{jkih} = -\mathring{K}_{kjih}$$
, $\mathring{K}_{kjhi} = -\mathring{K}_{kjih}$.

Since π is a closed 1-form on M, it follows that α_{ji} is symmetric in i and j, consequently \mathring{K} satisfies Bianchi first identity. Hence we obtain [4]

Contracting (2.2) with respect to the indices h and k we have

$$(2.6) \mathring{K}_{ii} = K_{ii} - (n-2)\alpha_{ii} - \alpha g_{ij},$$

where

(2.7)
$$\alpha = g^{ji}\alpha_{ji} = V_i\rho^i + \frac{n-2}{2}\rho_k\rho^k.$$

Transvection of (2.6) with g^{ji} yields

where $\mathring{k} = g^{ij} \mathring{K}_{ij}$.

We define a positive smooth function u on M by setting

$$(2.9) u(x) = e^{-\rho(x)}$$

for all $x \in M$. Denoting the covariant differentiation of u with respect to V_i by u_i , we have

(2.10)
$$\begin{aligned} \text{(i)} \quad u_i &= -u\rho_i \;, \quad \text{(ii)} \quad \overline{V}_j u_i &= u(\rho_j \rho_i - \overline{V}_j \rho_i) \;, \\ \text{(iii)} \quad \Delta u &= u(\rho^k \rho_k - \Delta \rho) \;, \end{aligned}$$

where $\Delta = g^{ij} \nabla_j \nabla_i$ is the Laplacian operator.

Now from (2.7), (2.8) and (2.10) (iii) we obtain

$$(2.11) u^2(\mathring{k} - k) = 2(n-1)u\Delta u - n(n-1)u_iu^i.$$

Corresponding to the tensor fiields G, Z and W (for definitions see [7], [3]) on (M, g) we define \mathring{G} , \mathring{Z} and \mathring{W} on the same space by

(2.12)
$$\mathring{G}_{ij} = \mathring{K}_{ij} - \frac{\mathring{k}}{n} g_{ij} ,$$

(2.13)
$$\mathring{Z}_{kjih} = \mathring{K}_{kjih} - \frac{\mathring{k}}{n(n-1)} (g_{hk}g_{ij} - g_{hj}g_{ki}),$$

$$(2.14) \qquad \mathring{W}_{kjih} = a\mathring{Z}_{kjih} + b_1 g_{kh} \mathring{G}_{ji} - b_2 g_{ki} \mathring{G}_{jh} + b_3 g_{ji} \mathring{G}_{kh} - b_4 g_{jh} \mathring{G}_{ki} + b_5 g_{kj} \mathring{G}_{ih} - b_6 g_{ih} \mathring{G}_{kj},$$

where a, b_1, \dots, b_6 are the same constants which occur in the definition of $W_{k,i,k}$.

Substituting for \hat{K}_{ij} and \hat{k} from (2.6) and (2.8) respectively in (2.12) we ob-

tain

(2.15)
$$\mathring{G}_{ji} = G_{ji} + (n-2)T_{ji} ,$$

where

(2.16)
$$T_{ji} = (\rho_{j}\rho_{i} - \nabla_{j}\rho_{i}) + \frac{1}{n}(\rho^{k}\rho_{k} - \Delta\rho)g_{ji}$$
$$= u^{-1}\left(\nabla_{j}u_{i} - \frac{1}{n}\Delta ug_{ji}\right)$$

in view of (2.10). It is easy to see that

(2.17)
$$g^{ij}T_{ij} = 0$$
, $g^{ij}G_{ij} = 0$.

Computations similar to those for \mathring{G}_{ji} yield

$$\dot{Z}_{kjih} = Z_{kjih} + S_{kjih} ,$$

where

$$(2.19) S_{kjih} = g_{kh}T_{ji} - g_{jh}T_{ki} + T_{kh}g_{ji} - T_{jh}g_{ki},$$

$$\mathring{W}_{kjih} = W_{kjih} + Q_{kjih} ,$$

where

(2.21)
$$\frac{Q_{kjlh}}{n-2} = \left(\frac{a}{n-2} + b_1\right) g_{kh} T_{jl} - \left(\frac{a}{n-2} + b_2\right) g_{kl} T_{jh} + \left(\frac{a}{n-2} + b_3\right) g_{jl} T_{kh} - \left(\frac{a}{n-2} + b_4\right) g_{jh} T_{kl} + b_6 g_{kj} T_{lh} - b_6 g_{ih} T_{kj}.$$

It is easy to see that

$$(2.22) T_{ij}T^{ij} = u^{-2}\left(\nabla^{j}u^{i} - \frac{1}{n}\Delta ug^{ij}\right)\left(\nabla_{j}u_{i} - \frac{1}{n}\Delta ug_{ij}\right),$$

$$(2.23) \qquad \mathring{G}_{ij}\mathring{G}^{ij} = G_{ij}G^{ij} + 2(n-2)G_{ij}T^{ij} + (n-2)^2T_{ij}T^{ij} ,$$

$$(2.24) \quad \mathring{W}_{kjih} \mathring{W}^{kjih} = W_{kjih} W^{kjih} + 2c(n-2)T_{ij}G^{ij} + c(n-2)^2T_{ij}T^{ij},$$

where c is a constant given by [3]

(2.25)
$$c = \frac{4a^2}{n-2} + 2a \sum_{i=1}^{6} b_i + \left(\sum_{i=1}^{6} (-1)^{i-1} b_i\right)^2 + (n-1) \sum_{i=1}^{6} b_i^2 - 2(b_1b_2 + b_2b_4 - b_5b_6).$$

3. Lemmas

Lemma 3.1. Suppose M is orientiable and compact. $\rho = constant$ if and only if the scalar function \mathring{k} is equal to the scalar curvarure k of M.

Proof. If $\rho = \text{constant}$, it is trivial to see that k = k. Suppose k = k holds. Then from (2.11) we have $2u\Delta u - nu_iu^i = 0$ which implies

$$\int_{M} u^{-1}(u_i u^i) dV = 0 ,$$

where dV denotes volume element of M. Since u > 0, the integral equation implies u = constant which in view of (2.9) implies $\rho = \text{constant}$.

Lemma 3.2. Suppose M is compact and orientiable. Then

$$(3.1) \quad \int_{\mathcal{M}} (\nabla^{j} u^{i}) G_{ji} dV = -\frac{n-2}{2n} \int_{\mathcal{M}} u^{i} \nabla_{i} k dV = -\frac{n-2}{2n} \int_{\mathcal{M}} \mathcal{L}_{Du} k dV,$$

where Du is the vector field on M associated with the 1-form du.

Proof. Since $\nabla^j K_{ji} = \frac{1}{2} \nabla_i k$, from the formula $G_{ij} = K_{ij} - (k/n) g_{ij}$ it follows that

$$\nabla^{j}G_{ji} = \frac{n-2}{2n}\nabla_{i}k.$$

Hence by directly computing $\nabla^j(u^iG_{ij})$, using (3.2) and integrating over M we obtain (3.1).

Lemma 3.3. Suppose M is orientable and compact. Then the following integral formulas hold for M:

(3.3)
$$\frac{1}{n} \int_{M} \left[nu(\mathring{G}_{ij}\mathring{G}^{ij} - G_{ij}G^{ij}) + (n-2)^{2} \mathcal{L}_{Du}k - n(n-2)^{2} u T_{ji}T^{ji} \right] dV = 0,$$

(3.4)
$$\frac{1}{n} \int_{M} \left[nu(\mathring{W}_{kjih} \mathring{W}^{kjih} - W_{kjih} W^{kjih}) + c(n-2)^{2} \mathcal{L}_{Du} k - n(n-2)^{2} cu T_{ij} T^{ij} \right] dV = 0.$$

Proof. Since $g^{ij}G_{ij} = 0$, from (2.17) we can write (2.23) in the form

$$u\{\mathring{G}_{ij}\mathring{G}^{ij}-G_{ij}G^{ij}-(n-2)^2T_{ij}T^{ij}\}=2(n-2)G_{ij}\nabla^j u^i\;.$$

On integrating over M and using Lemma 3.2, we obtain (3.3). The proof of (3.4) is similar.

To prove the next lemma we need the following known theorem.

Theorem A (Tashiro [5]). If a compact Riemannian manifold M of dimension $n \ge 2$ admits a nonconstant function ρ such that

$$\nabla^{j}\nabla^{i}\rho = \frac{1}{n}\Delta\rho g_{ij},$$

then M is conformal to a sphere.

Lemma 3.4. Suppose M of dimension $n \ge 2$ is compact, and admits a non-constant function ρ . M is conformal to a sphere if the tensor field with components T_{ij} is identically zero on M.

Proof. Since u > 0, from the expression (2.10) for T_{ij} it follows that $T_{ij} = 0$ if and only $\nabla_i u_j = \Delta u g_{ij}/n$. Hence from Theorem A the required result follows.

Finally we list a lemma due to Yano and Obata [9].

Lemma 3.5. Suppose M of dimension $n \ge 2$ is complete. If $\mathcal{L}_{Du}k = 0$ and $\nabla_t \nabla_j u = \Delta u g_{ij}/n$ holds for a nonconstant function u, then M is isometric to a sphere.

4. Thoerems

Throughout this and the next sections we shall assume that M is a compact orientable smooth Riemannian manifold of dimension n > 2.

Theorem 4.1. Let ρ be a smooth function on M and $u = e^{-\rho}$. Then

(4.1)
$$\int_{M} [nu(\mathring{G}_{ij}\mathring{G}^{ij} - G_{ij}G^{ij}) + (n-2)\mathscr{L}_{Du}k]dV \geq 0 ,$$

(4.2)
$$\int_{M} \left[nu(\mathring{W}_{kjih} \mathring{W}^{kjih} - W_{kjih} W^{kijh}) + c(n-2)^{2} \mathcal{L}_{Du} k \right] dV \ge 0,$$

$$(c > 0),$$

where the tensors \mathring{G} and \mathring{W} are formed with the help of the metric semi-symmetric connection induced by ρ . If ρ is such that the equality in integral equation (4.1) or (4.2) holds, then M is conformal to a sphere.

Proof. Follows from Lemmas 3.3 and 3.4.

Theorem 4.2. If a smooth nonconstant function ρ on M is such that

$$\mathscr{L}_{Du}k = 0 , \qquad \mathring{G}_{ij}\mathring{G}^{ij} = G_{ij}G^{ij} ,$$

or such that

$$\mathcal{L}_{Du}k = 0 , \quad \mathring{W}_{kjth}\mathring{W}^{kjth} = W_{kjth}W^{kjth} , \quad (c > 0) ,$$

then M is isometric to a sphere.

Proof. Follows from Lemmas 3.3 and 3.5 and the conditions stated in the theorem.

Theorem 4.3. Suppose M is an Einstein manifold. If a smooth nonconstant function ρ on M is such that

$$\mathring{G}_{ij} = 0$$

or such that

$$\dot{W}_{kiih} = 0 \; , \qquad (c > 0) \; ,$$

then M is isometric to a sphere.

Proof. For an Einstein manifold $G_{ij} = 0$. Hence from Lemmas 3.3 and 3.5 and the conditions stated in the theorem the result follows.

5. Special cases

(i) Let ρ be a smooth function on M arising from a conformal change of metric on M, that is, let ρ be such that a metric g^* on M is conformally related to g by

$$(5.1) g_{ij}^* = e^{2\rho} g_{ij} .$$

For any tensor with respect to g, the corresponding tensor with respect to g^* will be denoted by the same letter with a star. The function ρ induces a metric semi-symmetric connection \mathring{V} on M and a connection V^* , called the conformal change of connection on M. The expressions for the curvature tensors \mathring{K} and K^* in terms of K and the derivatives of ρ with respect to the Riemannian connection V are the same (see [4]). Since $g^{*ij} = e^{-2\rho}g_{ij}$, we have

(5.2)
$$K_{kji}^{*h} = \mathring{K}_{kji}^{h}, \quad K_{ji}^{*} = \mathring{K}_{ji}, \quad k^{*} = e^{-2}\mathring{k},$$

so that

(5.3)
$$G_{ii}^* = \mathring{G}_{ii}, \quad Z_{kji}^{*h} = \mathring{Z}_{kji}^{h}, \quad W_{kji}^{*h} = \mathring{W}_{kji}^{h}.$$

It is easy to see that

(5.4)
$$G^{*ij} = e^{-4\rho} \mathring{G}^{ij} ,$$

(5.5)
$$W_{kjih}^* = e^{2\rho} \mathring{W}_{kjih}, \qquad W^{*kjih} = e^{-6\rho} \mathring{W}^{kjih},$$

so that

(5.6)
$$G^{*ij}G_{ij}^* = e^{-4\rho}\mathring{G}_{ij}\mathring{G}^{ij} = u^{4\rho}\mathring{G}_{ij}\mathring{G}^{ij} ,$$

$$(5.7) W_{kjih}^* W^{*kjih} = e^{-4\rho} \mathring{W}_{kjih} \mathring{W}^{kjih} = u^{4\rho} \mathring{W}_{kjih} \mathring{W}^{kjih} ,$$

where $u = e^{-\rho}$.

Substituting (5.6) in (3.3) we obtain

(5.8)
$$\int_{M} \left[(u^{-3} G_{ij}^{*} G^{*ij} - u G_{ij} G^{ij}) + \frac{1}{n} (n-2)^{2} \mathcal{L}_{Du} k - (n-2)^{2} u T_{ij} T^{ij} \right] dV = 0 ,$$

which is an integral formula due to Yano and Obata [9].

Again substituting (5.7) in (3.4) we have

(5.9)
$$\int_{M} \left[(u^{-3} W_{kjih}^{*} W^{*kjih} - u W_{kjih} W^{kjih}) + \frac{1}{n} c(n-2)^{2} \mathcal{L}_{Du} k - (n-2)^{2} c u T_{ij} T^{ji} \right] dV = 0 ,$$

which is a formula due to Hsiung and Mugridge [3].

(ii) Suppose ρ is a smooth function on M satisfying

(5.10)
$$K_{kjih} = e^{-\rho} \{ \alpha_{ji} g_{hk} - \alpha_{ki} g_{hj} + g_{ji} \alpha_{hk} - g_{ki} \alpha_{hj} \}.$$

Then it follows from (2.2) that

(5.11)
$$\mathring{K}_{kjih} = (1 - u^{-1})K_{kjih}$$
, $\mathring{K}_{ji} = (1 - u^{-1})K_{ji}$, $\mathring{k} = (1 - u^{-1})k$,

so that

(5.12)
$$\mathring{G}_{ji} = (1 - u^{-1})G_{ji}$$
, $\mathring{W}_{kjih} = (1 - u^{-1})W_{kjih}$.

For this special case, (4.1) and (4.2) reduce to

(5.13)
$$\int_{M} \left[n(u^{-1} - 2)G_{ij}G^{ij} + (n-2)\mathscr{L}_{Du}k \right] dV \geq 0 ,$$

(5.14)
$$\int_{M} \left[n(u^{-1} - 2) W_{kjih} W^{kjih} + c(n-2)^{2} \mathcal{L}_{Du} k \right] dV \geq 0 .$$

Thus, if ρ is a nonconstant smooth function on M satisfying (5.10) and is such that the equality in (5.13) or (5.14) holds, then M is conformal to a sphere.

On the other hand, if M is Einsteinian and ρ is a nonconstant function satisfying (5.10), then, since $\mathring{G}_{ij} = (1 - u^{-1})G_{ij}$, it follows that $\mathring{G}_{ij} = 0$. Theorem 4.3 shows that M is isometric to a sphere.

References

- [1] N. H. Ackerman & C. C. Hsiung, Isometry of Riemannian manifolds to spheres, Canad. J. Math. 28 (1976) 63-72.
- [2] K. Amur & S. S. Pujar, Isometry of Riemannian manifolds admittig a conformal transformation group, J. Differential Geometry 12 (1977) 247-252.
- [3] C. C. Hsiung & L. Mugridge, Conformal changes of metrics on a Riemannian manifold, Math. Z. 119 (1971) 179-187.
- [4] T. Imai, Notes on semi-symmetric metric connections, Tensor N.S. 24 (1972) 293-296.
- [5] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1975) 251-295.
- [6] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970) 1579-1581.
- [7] K. Yano & H. Hiramatu, Riemannian manifolds admitting an infinitesimal conformal transformation, J. Differential Geometry 10 (1975) 23-38.
- [8] —, Isometry of Riemannian manifolds to spheres, J. Differential Geometry 12 (1977) 443-460.
- [9] K. Yano & M. Obata, Conformal changes of Riemannian metrics, J. Differential Geometry 4 (1970) 53-72.

KARNATAK UNIVERSITY, DHARWAR, INDIA